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8.1 INTRODUCTION

The first step in obtaining the computed value of an observed quantity is
to obtain the light-time solution for that observable. This section describes the
spacecraft light-time solution used to obtain the computed values of all spacecraft
observables and the quasar light-time solution used to obtain the computed
values of narrowband and wideband quasar interferometry observables
(described in Section 13). The spacecraft light-time solution can be obtained in the
Solar-System barycentric space-time frame of reference or in the local geocentric
space-time frame of reference. The Solar-System barycentric frame of reference
can be used for a spacecraft located anywhere in the Solar System. The local
geocentric frame of reference can be used for a spacecraft that is very near the
Earth (e.g., a low Earth orbiter). Note that the Moon is not close enough to the
Earth to use this frame of reference, and its motion must be represented in the
Solar-System barycentric space-time frame of reference. The quasar light-time
solution is obtained in the Solar-System barycentric space-time frame of
reference.

Quantities from each spacecraft light-time solution are used to calculate a
precision one-way or round-trip light time between a tracking station on Earth
(or an Earth satellite) and the spacecraft. Quantities from each quasar light-time
solution are used to calculate a precision delay of the quasar wavefront from its
reception at receiver 1 to its reception at receiver 2. Either receiver can be a
tracking station on Earth or an Earth satellite. These precision light times are
calculated from the formulations given in Section 11. The computed value of each
observable is obtained from one, two, or four light-time solutions and the
corresponding computed precision light times as described in Section 13.

The spacecraft light-time solution produces position, velocity, and
acceleration vectors of the receiver at the reception time t3, the spacecraft at the
reflection time t2 (for round-trip data) or transmission time t2 (for one-way data),
and the transmitter (for round-trip data) at the transmission time t1. The receiver
or the transmitter can be a tracking station on Earth or an Earth satellite. The
spacecraft can be a free spacecraft or a landed spacecraft (resting on any celestial
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body in the Solar System). In the Solar-System barycentric frame of reference,
the position, velocity, and acceleration vectors at t3, t2, and t1 are referred to the
Solar-System barycenter. In the local geocentric frame of reference, the position,
velocity, and acceleration vectors are referred to the center of mass of the Earth.

The quasar light-time solution produces position, velocity, and
acceleration vectors of receiver 1 at the reception time t1 of the quasar wavefront
at receiver 1 and position, velocity, and acceleration vectors of receiver 2 at the
reception time t2 of the quasar wavefront at receiver 2. These vectors are
referred to the Solar-System barycenter. Either receiver can be a tracking station
on Earth or an Earth satellite.

Section 8.2 gives the equations for the position, velocity, and acceleration
vectors of the receiver, spacecraft, and transmitter for a spacecraft light-time
solution. It also gives the equations for the position, velocity, and acceleration
vectors of the two receivers for a quasar light-time solution.

Section 8.3 describes the spacecraft light-time solution. The light-time
equation is derived in Section 8.3.1. The differential corrector, which is used in the
iterative solution for the epochs t2 and t1, is given in Section 8.3.2. The down-leg
predictor, which gives the first estimate of the epoch t2, is given in Section 8.3.3.
The up-leg predictor, which gives the first estimate of the epoch t1, is given in
Section 8.3.4. Quantities that are calculated or interpolated at the penultimate
estimate for t2 or t1 are mapped to the final value of the epoch using the
equations given in Section 8.3.5. The algorithm for the spacecraft light-time
solution in the Solar-System barycentric or local geocentric frame of reference is
given in Section 8.3.6.

Section 8.4 describes the quasar light-time solution. The quasar light-time
equation is derived in Section 8.4.1. The differential corrector which is used in
determining the reception time t2 at receiver 2 is given in Section 8.4.2. The
algorithm for the quasar light-time solution in the Solar-System barycentric
frame of reference is given in Section 8.4.3.
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8.2 POSITION, VELOCITY, AND ACCELERATION
VECTORS OF PARTICIPANTS

This section gives the high-level equations for the position, velocity, and
acceleration vectors of the participants in the spacecraft and quasar light-time
solutions. The vectors for a participant are evaluated at the epoch of participation
of the participant. The epochs of participation used in this section are the
arguments for computing the position, velocity, and acceleration vectors of the
participants and are specified in coordinate time (ET) of the Solar-System
barycentric space-time frame of reference or the local geocentric space-time
frame of reference.

For a spacecraft light-time solution in the Solar-System barycentric space-
time frame of reference, the position, velocity, and acceleration vectors of the
receiver at the reception time t3, the spacecraft at the reflection time or
transmission time t2, and the transmitter at the transmission time t1, all of which
are referred to the Solar-System barycenter C, are given by:

      r r r3
C

3
E

E
Ct t t3 3 3( ) = ( ) + ( )     r r r→ ú , úú (8�1)

      r r r r2
C

2
B

B
P

B,P
Ct t t t2 2 2 2( ) = ( ) + ( ) + ( )     r r r→ ú , úú (8�2)

      r r r1
C

1
E

E
Ct t t1 1 1( ) = ( ) + ( )     r r r→ ú , úú (8�3)

In Eq. (8�1), if the receiver (point 3) is a tracking station on Earth, the first
term on the right-hand side is the geocentric space-fixed position vector of the
tracking station (in the Solar-System barycentric frame of reference) calculated
from the formulation of Section 5. If the receiver is an Earth satellite, the first
term is the geocentric space-fixed position vector of the satellite interpolated
from the satellite ephemeris (the PV file for the satellite generated by program
PV). When the ODP is operating in the Solar-System barycentric space-time
frame of reference, PV files are generated in that frame of reference. The second
term of Eq. (8�1) is the position vector of the Earth relative to the Solar-System
barycenter, obtained by interpolating the planetary ephemeris (Section 3).
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In Eq. (8�2), the spacecraft (point 2) can be a free spacecraft or a landed
spacecraft. If the spacecraft is landed, point B is the center of mass of the body
that the landed spacecraft is resting upon. If the spacecraft is free, point B is the
center of integration for the spacecraft ephemeris (PV file). The position vector of
a free spacecraft relative to the center of integration B is obtained by
interpolating the spacecraft ephemeris (Section 4). If the spacecraft is landed, the
space-fixed position vector of the lander relative to the center of mass of the
lander body B is calculated from the formulation of Section 6.

The second term on the right-hand side of Eq. (8�2) is non-zero only if the
center of integration B for the ephemeris of a free spacecraft or the body B that a
landed spacecraft is resting upon is a satellite or the planet of one of the outer
planet systems. For this case, the position, velocity, and acceleration vectors of
the satellite or planet B of an outer planet system relative to the center of mass P
of the planetary system are interpolated from the satellite ephemeris for the
planetary system.

If the spacecraft is free and the center of integration B is the Sun, Mercury,
Venus, Earth, the Moon, or an asteroid or comet, the third term of Eq. (8�2) is
the position vector of body B relative to the Solar-System barycenter, obtained
by interpolating the planetary ephemeris (and the small-body ephemeris which
contains the asteroid or comet). If the center of integration is the center of mass
of an outer planet system, or the planet or a satellite of that system, the third
term of Eq. (8�2) is the position vector of the center of mass P of the planetary
system relative to the Solar-System barycenter, obtained by interpolating the
planetary ephemeris.

If the spacecraft is landed and the lander body B is Mercury, Venus, the
Moon, or an asteroid or comet, the third term of Eq. (8�2) is the position vector
of body B relative to the Solar-System barycenter, obtained by interpolating the
planetary ephemeris (and the small-body ephemeris which contains the asteroid
or comet). If the landed spacecraft is resting upon the planet or a satellite of an
outer planet system, the third term of Eq. (8�2) is the position vector of the
center of mass P of the planetary system relative to the Solar-System barycenter,
obtained by interpolating the planetary ephemeris.
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In Eq. (8�3), if the transmitter is a tracking station on Earth, the first term
on the right-hand side is the geocentric space-fixed position vector of the
tracking station calculated from the formulation of Section 5. If the transmitter is
an Earth satellite, the first term is the geocentric space-fixed position vector of the
satellite interpolated from the satellite ephemeris. The second term is the position
vector of the Earth relative to the Solar-System barycenter, obtained by
interpolating the planetary ephemeris.

For a spacecraft light-time solution in the local geocentric space-time
frame of reference, the position, velocity, and acceleration vectors of the
participants are referred to the center of mass E of the Earth. Hence, Eqs. (8�1)
and (8�3) reduce to their first terms. The geocentric space-fixed position vector of
a receiving or transmitting tracking station on Earth is calculated from the
formulation of Section 5. The only difference from the calculations in the Solar-
System barycentric frame is that the relativistic transformation from the
geocentric frame to the Solar-System barycentric frame (see Section 5.4.2) is not
performed in the local geocentric frame of reference. If the receiver or
transmitter is an Earth satellite, the geocentric position vector of the satellite is
interpolated from the satellite ephemeris (the PV file for the satellite generated
by program PV). When the ODP is operating in the local geocentric space-time
frame of reference, PV files are generated in that frame of reference. In the local
geocentric frame of reference, Eq. (8�2) reduces to its first term which is the
geocentric position vector of the free spacecraft, obtained by interpolating its
geocentric ephemeris (PV file).

For a quasar light-time solution, the position, velocity, and acceleration
vectors of receiver 1 at the reception time t1 of the quasar wavefront at receiver
1 are given by Eq. (8�3). The position, velocity, and acceleration vectors of
receiver 2 at the reception time t2 of the quasar wavefront at receiver 2 are given
by Eq. (8�3) with each subscript 1 replaced by a 2.
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8.3 SPACECRAFT LIGHT-TIME SOLUTION

8.3.1 LIGHT-TIME EQUATION

The light-time equation in the Solar-System barycentric space-time frame
of reference is derived in Subsection 8.3.1.1. This equation is converted to the
light-time equation in the local geocentric space-time frame of reference in
Subsection 8.3.1.2. Each of these sections give the auxiliary equations, which are
used in the light-time solution to evaluate the light-time equation. Additional
equations are given for calculating auxiliary quantities (e.g., the range rate) on
the up and down legs of the light path.

8.3.1.1 Solar-System Barycentric Space-Time Frame of Reference

The equation for the light path and the corresponding light-time equation
can be derived from the approximate expression (2�16) for the interval ds. The
first-order term in the light-time equation is the straight line path length between
two points divided by the speed of light c. The next approximation accounts for
the reduction in the coordinate velocity of light vc below c due to the
gravitational potential of the celestial bodies of the Solar System. In terms of the
rectangular coordinates of the light path and coordinate time t in the Solar-
System barycentric space-time frame of reference, the coordinate velocity of
light is defined to be:

    
v

dx
dt

dy
dt

dz
dtc

2
2 2 2

=






+






+






(8�4)

In Eq. (2�16), the interval ds is zero along the light path, and the coordinate
velocity of light vc is given by:

    
v c

U

c
c = −

+( )







1

1
2

γ
(8�5)
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where all terms have been retained to order 1/c2, and the gravitational potential
U is given by Eq. (2�17). The relativistic light-time delay due to each body of the
Solar System accounts for the increase in the light time due to the reduction in vc

below c due to the mass of the body. Since U is linear in the contributions due to
the Solar-System bodies and because the velocities of these bodies are small
relative to c, the relativistic light-time delay due to each Solar-System body is
calculated in its own space-time frame of reference from the one-body metric for
that body. Simplifying Eq. (2�16) to the case of one celestial body located at the
origin of coordinates, deleting the scale factor l which does not affect the motion
of light, and changing to spherical coordinates gives the following expression for
the one-body metric, which contains terms to order 1/c2 in the components of
the metric tensor:

    
ds

c r
c dt

c r
dr r d r d2

2
2 2

2
2 2 2 2 2 21

2
1

2
= −





− +





+ +( )µ γ µ
θ θ φsin (8�6)

where r is the radial coordinate, θ is the angle from the z axis, and the angle φ is
measured from the x axis toward the y axis. The quantity µ is the gravitational
constant of the celestial body located at the origin of coordinates. Note that if all
terms were retained to order 1/c2 in Eq. (8�6), the first parentheses in Eq. (8�6)
would contain the additional term     +2 2 4 2β µ c r .

Eq. (8�6) will be used to derive the relativistic light-time delay due to the
Sun. This relativistic correction to the Newtonian light time accounts for the
reduction in the coordinate velocity of light vc below c and approximately for the
bending of the light path. This same term without the bending effect will be used
for calculating the relativistic light-time delay for other Solar-System bodies. The
Newtonian light time is the straight-line path length between the transmitter and
receiver divided by the speed of light c. It is calculated in the Solar-System
barycentric space-time frame of reference in the Solar-System barycentric light-
time solution.



SECTION  8

8�10

The equations of motion for light are the equations of a geodesic curve
plus the additional condition that the interval ds is zero along the light path. A
geodesic curve extremizes the integral of ds between two points:

    
δ ds =∫ 0 (8�7)

We can express this integral as:

    
δ £ ds =∫ 0 (8�8)

where the Lagrangian £ is given by:

    
£ = =

ds
ds

1 (8�9)

The Euler-Lagrange equations which extremize the integral (8�8) are given by:

    

d
ds qdq

ds

∂

∂

∂
∂

£ £

( )
















− = 0 (8�10)

where     q = r,  θ ,  φ,  or t . From Eqs. (8�6) and (8�9),
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µ γ µ θ θ
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c r
c

dt
ds c r
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ds

r
d
ds

r
d
ds

sin (8�11)

Evaluating Eq. (8�10) for q = θ using Eqs. (8�11) and (8�9) gives:

    
r

d

ds

dr
ds

d
ds c r

r
d
ds

2

2 2

2

2 1 0
θ θ γ µ φ

θ θ+ −





−






=sin cos (8�12)

If coordinates are chosen so that a particle moves initially in the plane   θ π= 2 ,

  d dsθ  will be zero and Eq. (8�12) gives the result that     d ds2 2 0θ = . Thus, in the
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1-body problem, the motion of particles and light is planar, and the equations
may be simplified by setting

    

θ π

θ

=

=

2

0
d
ds

(8�13)

Since Eq. (8�11) is explicitly independent of t and φ, first integrals of Eq. (8�10) for
q = t and φ are given by     ∂ ∂£ constantdt ds( ) =  and     ∂ ∂ φ£ constantd ds( ) = .
Differentiating Eq. (8�11) accordingly and using Eqs. (8�9) and (8�13) gives:

    

dt
ds

c r

=
−

constant

1
2

2
µ (8�14)

and

    

d
ds

r
c r

φ
γ µ

=
+





constant

2
21

2
(8�15)

Dividing Eq. (8�14) by Eq. (8�15) and ignoring 1/c4 terms gives:

    

dt
d

r
c rφ

γ µ
= +

+( )









2
21

2 1
constant (8�16)

Setting ds = 0 in Eq. (8�6) and substituting Eq. (8�13) gives:

    
1

2
1

2
2

2 2
2

2 2 2−





= +





+( )µ γ µ
φ

c r
c dt

c r
dr r d (8�17)

Substituting dt from Eq. (8�16) into Eq. (8�17), setting     dr dφ = 0 when r = R (the
minimum value of r on the light path), and ignoring 1/c4 terms gives:
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R
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r r
c

r R
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2 1 2 1
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1
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(8�18)

Integrating between limits of (r, φ) and (R, 0) and ignoring 1/c4 terms gives:

    

φ π
γ µ

γ µ

γ µ
γ µ

= ± −
+

+( )
−

+( )




































= ±
+

+( )
−

+( )


















−

−

2

1
1

1
1

1 2

2

1 2

2

sin

cos

R
c

r c R

R
c

r c R

(8�19)

where the plus sign applies for increasing r and the minus sign applies for
decreasing r. From the first form of Eq. (8�19), when r approaches ∞, the angle φ
will approach one of the two asymptotic values:

    
φ π γ µ

= ± +
+( )







2

1
2c R

(8�20)

The angle between the incoming and outgoing asymptotes is thus:

    
∆φ

γ µ
=

+( )2 1
2c R

(8�21)

For general relativity, γ = 1 and the bending of light ∆φ has a maximum
value of 8.48 µrad (1.75 arc seconds) when R is equal to the radius of the Sun,
696,000 km. Figure 8�1 shows the curved path of a photon passing the Sun S.
Light is moving in the positive y direction, and the point of closest approach
occurs at x = R, y = 0. The polar coordinates (r, φ) and rectangular coordinates (x,
y) of two points on the light path are shown along with the straight line path (of
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length r12) joining these two points. The y intercept, which is equal to about
1096 astronomical units, was obtained from Eq. (8�19) by setting cos φ equal to
zero. The x intercept of the asymptotes follows from the y intercept and the
angle of the asymptote.

Given Eq. (8�19) for the light path derived from the one-body metric, we
will now derive the corresponding light-time equation from the one-body
metric. Substituting dφ from Eq. (8�16) into Eq. (8�17), setting dr/dt = 0 when r

equals its minimum value R, and ignoring 1/c4 terms gives:

    

dt

r
c r

dr

c r
c

R
c

= ±
+

+( )









+
+( )







 − +

+( )





















1
1

1 1

2

2

2

2

2

2
1
2

γ µ

γ µ γ µ

(8�22)

Making the following change of variable:

    
ρ

γ µ
= +

+( )
r

c

1
2 (8�23)

    
ρ

γ µ
0 2

1
= +

+( )
R

c
(8�24)

gives, ignoring 1/c4 terms:

    

dt
c

d

c
= ±

+
+( )









−( )

ρ
γ µ

ρ

ρ ρ

1
2

2
0

2
1
2

(8�25)
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Expressing the right-hand side as the sum of two terms gives:

    

dt
c

d

c

d
= ±

−( )
±

+( )
−( )

1 1

2
0

2
3

2
0

2
1
2

1
2

ρ ρ

ρ ρ

γ µ ρ

ρ ρ
(8�26)

Integrating from point 1 (ρ1, t1) to point 2 (ρ2, t2) gives:

    

t t
c

c

2 1 2
2

0
2

1
2

0
2

3

2 2
2

0
2

1 1
2

0
2

1

1

1
2

1
2

1
2

1
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− = ± −( ) − −( )









±
+( ) + −( )

+ −( )

















ρ ρ ρ ρ

γ µ ρ ρ ρ

ρ ρ ρ
ln

(8�27)

where the plus signs apply when r is strictly increasing from point 1 to point 2,

and the minus signs apply when r is strictly decreasing from point 1 to point 2.

At this point, we need a physical interpretation of the quantity

  
ρ ρ2

0
2 1 2

−( ) . First, let l denote the path length between the points (R, 0) and

(r, φ):

    
l dr r d

R

r
= +( )∫ 2 2 2

0

1
2

φ
φ

,

,
(8�28)

which can be expressed as:

    

l r
d
dr

dr
R

r
= +

















∫ 1 2

2
1
2φ

(8�29)

Substituting   d drφ  from Eq. (8�18), ignoring terms of order 1/c4, and

substituting Eqs. (8�23) and (8�24) gives:
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l
d

=
−( )∫ ρ ρ

ρ ρρ

ρ

2
0

2
1
20

(8�30)

which is equal to:

    
l = −( )ρ ρ2

0
2

1
2 (8�31)

Hence, the quantity 
  
ρ ρ2

0
2

1
2−( )  is the path length l between the points (R, 0) and

(r, φ). We will use the notation:

    
l2 2

2
0

2
1
2= −( )ρ ρ (8�32)

and

    
l1 1

2
0

2
1
2= −( )ρ ρ (8�33)

We will also denote the path length between any two points 1 and 2 as l12. The
next step will be to substitute Eqs. (8�32) and (8�33) into Eq. (8�27) and to
transform sums and differences of l2 and l1 into the path length l12.

First, we will consider the first term of Eq. (8�27). For r strictly increasing
from point 1 to point 2, the first term of Eq. (8�27) is equal to:

    
+

−
=

l l
c

l
c

2 1 12

For r strictly decreasing from point 1 to point 2, the first term of Eq. (8�27) is
equal to:

    
−

−
=

−
=

l l
c

l l
c

l
c

2 1 1 2 12
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where, in this case, l1 is greater than l2. For r decreasing from r1 to R and then
increasing to r2, the light time from point 1 to point 2 calculated from the first
term of Eq. (8�27) is the sum of the first term evaluated on the inbound leg of the
light path plus the first term evaluated on the outbound leg of the light path:

    
+

−
−

−
=

+
=

l
c

l
c

l l
c

l
c

2 1 2 1 120 0

Hence, the first term of Eq. (8�27) can be replaced with the term:

    

l
c
12 (8�34)

where l12 is the path length between points 1 and 2.

Now, we will consider the second term of Eq. (8�27). The argument of the
natural logarithm can be expressed as:

  

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

2 2
2

0
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1 1
2

0
2

1 1
2

0
2

2 2
2

0
2

1 2 2
2

0
2

1
2

0
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1 2 2
2

0
2

1
2

0

1
2

1
2

1
2

1
2

1
2

1
2

1
2

+ −( )
+ −( )

=
− −( )
− −( )

=
+ + −( ) − −( )









+ − −( ) − − 22
1
2( )









(8�35)

where the second form is obtained from the first by multiplying and dividing by:

  
ρ ρ ρ ρ ρ ρ1 1

2
0

2
2 2

2
0

2
1
2

1
2− −( )







 − −( )









The third form is obtained from the first two forms by adding the numerators
and denominators. For r strictly increasing from point 1 to point 2, the argument
of the natural logarithm given by Eq. (8�35) becomes:

    

ρ ρ
ρ ρ

ρ ρ
ρ ρ

1 2 2 1

1 2 2 1

1 2 12

1 2 12

+ + −( )
+ − −( ) =

+ +
+ −

l l

l l
l
l
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and the second term of Eq. (8�27) becomes:

    
+

+( ) + +
+ −











1
3

1 2 12

1 2 12

γ µ ρ ρ
ρ ρc

l
l

ln (8�36)

For r strictly decreasing from point 1 to point 2, the second term of Eq. (8�27) is
negative. Changing this sign to positive inverts the argument of the natural
logarithm, which becomes:

    

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ
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ρ ρ

ρ ρ
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and the second term of Eq. (8�27) becomes the term (8�36). Note that for this
case, l1 is greater than l2. For r decreasing from r1 to R and then increasing to r2,
the light-time correction from point 1 to point 2 calculated from the second term
of Eq. (8�27) is the sum of the second term evaluated on the inbound leg of the
light path plus the second term evaluated on the outbound leg of the light path.
Using the first form of (8�35) for the argument of the natural logarithm, the
correction to the light time on the outbound leg is given by:
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Using the second form of (8�35) for the argument of the natural logarithm, the
correction to the light time on the inbound leg is given by:
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The sum of these two terms is:
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Using the same types of procedures used in (8�35), the argument of the natural
logarithm can be expressed as:
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(8�37)

Hence, for r decreasing from r1 to R and then increasing to r2, the effect of the
second term of Eq. (8�27) on the light time is given by Eq. (8�36). Since we
obtained this same result for r strictly increasing from point 1 to point 2 and also
for r strictly decreasing from point 1 to point 2, the second term of
Eq. (8�27) can be replaced with the term (8�36).

Replacing the first and second terms of Eq. (8�27) with the terms (8�34)
and (8�36) gives the following expression for the one-body light-time equation
(where the body is located at the origin of coordinates):
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Figure 8�1 shows the straight-line path (of length r12) between points 1 and 2
and the curved path (of length l12). In order to evaluate Eq. (8�38), we need an
approximate expression for l12 − r12. This expression needs to be reasonably
accurate only when the bending of the light path is significant. This only occurs
when the transmitter and receiver are on opposite sides of the Sun (the only
body for which we consider the bending of the light path). Furthermore, r1 and
r2 must be large relative to the radius of the Sun, and the minimum radius R

(which occurs between r1 and r2) must not be large relative to the radius of the
Sun. For this geometry, we will assume that light travels along the asymptotes
between points 1 and 2. This is a reasonable approximation since the curved light
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path is much closer to the asymptotes than to the straight-line path connecting
points 1 and 2.

In Figure (8�1), let the angle between the straight-line light path (between
points 1 and 2) and the inbound asymptote at point 1 (where we assume that the
inbound asymptote intersects point 1) be denoted as α  1. Similarly, let the angle
between the straight-line path and the outbound asymptote at point 2 (where we
assume that the outbound asymptote intersects point 2) be denoted as α  2. The
angle between the two asymptotes is ∆φ given by Eq. (8�21). Since the sum of the
three angles in the triangle formed by the straight-line light path and the two
asymptotes is 180 degrees,

  α α φ1 2+ = ∆ (8�39)

For the conditions stated above, the distance D from the straight-line path to the
intersection of the asymptotes is given approximately by:

    y y D2 2 1 1α α= = (8�40)

where we consider y1 and y2 to be positive. Solving for α  1 and α  2 gives:
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and
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Given these angles, the approximate expression for l12 − r12 is given by:
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Substituting Eqs. (8�41) and (8�42) into Eq. (8�44) gives:
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From Eq. (8�21), this is of order 1/c4. If y1 and y2 are one astronomical unit, and
R is equal to the 696,000 km radius of the Sun, the curved path length l12

between points 1 and 2 is 2.7 m longer than the straight-line path length r12. If y2

approaches infinity, l12 − r12 approaches 5.4 m. For these same two cases, the
values of the distance D between the straight-line path and the intersection of the
two asymptotes are 635 km and 1270 km, respectively. From Figure 8�1, the
distance between the curved path and the intersection of the asymptotes is about
3 km. Hence, the assumption that the curved path is much closer to the
asymptotes than the straight-line path is correct.

Substituting Eq. (8�23) into the second term of Eq. (8�38) gives:
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The second term of Eq. (8�46) is of order 1/c3. The effect of the 1/c2 terms in the
numerator and denominator of the argument of the natural logarithm is of
order 1/c5. From Eqs. (8�45) and (8�21), the curved path length l12 differs from
the straight-line path length r12 by terms of order 1/c4. In the second term of
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Eq. (8�46), this difference would produce terms of order 1/c7, which are
negligible. Hence, in the second term of Eq. (8�46), we can replace l12 with r12:
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The first term of Eq. (8�47) is the light time from point 1 to point 2 along the
curved path at speed c. The second term is the increase in the light time due to
traveling along this path at the coordinate velocity of light (see Eq. 8�5), which is
less than c. The effect of the bending of the light path on the second term of Eq.
(8�47) is due to the 1/c2 terms in the numerator and denominator of the
argument of the natural logarithm. However, virtually all of the effect comes
from the term in the denominator.

The following derivation will give an approximate expression for the
effect of the bending of light on the second term of Eq. (8�47). As stated above,
this effect is due to the 1/c2 term in the denominator of the argument of the
natural logarithm. The expression only needs to be reasonably accurate when
the effect of the bending is large. This occurs for the geometry stated after
Eq. (8�38). This is the same geometry used to derive Eq. (8�45), which gives the
effect of the bending of the light path on the first term of Eq. (8�47). In the
second term of Eq. (8�47), the natural logarithm can be expressed as the natural
logarithm of the numerator minus the natural logarithm of the denominator.
The effect of the latter term on Eq. (8�47) is:

    
−

+( )
+ − +





+( )1
3 1 2 12

2 1
2

γ µ γ µ

c
r r r

c
ln (8�48)

Differentiating this term gives the effect of the 1/c2 term in the argument of the
natural logarithm:
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Referring to Figure 8�1, for the conditions stated after Eq. (8�38), the
denominator of Eq. (8�49) is given to sufficient accuracy by Eq. (8�44) evaluated
with:
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Substituting Eqs. (8�50) and (8�51) into Eq. (8�44) and replacing the denominator
of Eq. (8�49) with that result gives:
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This is the effect of the bending of the light path on the second term of
Eq. (8�47). From Eq. (8�45), the effect of the bending of the light path on the first
term of Eq. (8�47) is given by:
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The net of these two effects is one-half of Eq. (8�52). Hence, we can replace l12 in

the first term of Eq. (8�47) with r12 and in the second term of Eq. (8�47) we must

change     2 1 2+( )γ µ/c  to     1
2+( )γ µ/c  in the denominator of the natural logarithm.

In order for the modified form of Eq. (8�47) to be consistent with Eq. (8�5) for

the coordinate velocity of light, we must make the same change in the
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numerator of the natural logarithm. The final version of the one-body light-time

equation is thus given by:
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Eq. (8�54) was derived from the one-body metric given by Eq. (8�6).
Eq. (8�6) was obtained by simplifying Eq. (2�16) to the case of one celestial body
located at the origin of coordinates. Eq. (2�16) was obtained from Eq. (2�15) by
retaining terms in each component gij of the metric tensor to order 1/c2 only.
The neglected 1/c4 terms of g44 affect the light time by a maximum of about
1 cm/c. The neglected components g14, g24, and g34 of the metric tensor produce
terms in the coordinate velocity of light (see Eq. 8�5) that are of order 1/c3.
These neglected terms affect the light time by less than 1 cm/c.

Eq. (8�54) can be used to assemble the final form of the light-time
equation used in the light-time solution in the Solar-System barycentric space-
time frame of reference. The first term of Eq. (8�54) is evaluated in the Solar-
System barycentric frame of reference. It is the time for light to travel from point
1 to point 2 along a straight-line path at the speed of light c. This is the
Newtonian light time. The second term of Eq. (8�54) accounts for the reduction
in the coordinate velocity of light below c and the bending of the light path. The
bending increases the path length but also increases the coordinate velocity of
light because the curved light path is further away from the gravitating body
than the straight-line path. The net effect of the bending is to decrease the light
time by the increase in the path length divided by c. The effects of the bending of
the light path are due to the 1/c2 terms in the argument of the natural logarithm.
The second term of Eq. (8�54) including the bending terms is evaluated for the
Sun. This same term without the bending terms is evaluated for every other
celestial body of the Solar System (the nine planets and the Moon) that the user
�turns on�. The final form of the light-time equation in the Solar-System
barycentric space-time frame of reference is given by:
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where µS is the gravitational constant of the Sun and µB is the gravitational
constant of a planet, an outer planet system, or the Moon. In the spacecraft light-
time solution, t1 refers to the transmission time at a tracking station on Earth or
at an Earth satellite, and t2 refers to the reflection time at the spacecraft or, for
one-way data, the transmission time at the spacecraft. The reception time at a
tracking station on Earth or at an Earth satellite is denoted by t3. Hence,
Eq. (8�55) is the up-leg light-time equation. The corresponding down-leg light-
time equation is obtained by replacing 1 with 2 and 2 with 3 as indicated after the
equation.

The following equations will be used to evaluate Eq. (8�55) on the up and
down legs of the light path in the light-time solution in the Solar-System
barycentric space-time frame of reference. Equations are also given for
calculating certain auxiliary quantities used at various places in program Regres.
The light-time solution in the Solar-System barycentric frame of reference gives
the position, velocity, and acceleration vectors referred to the Solar-System
barycenter C of the receiver (point 3) at the reception time t3, the spacecraft
(point 2) at the reflection time or transmission time t2, and the transmitter
(point 1) at the transmission time t1. These vectors, which are calculated from
Eqs. (8�1) to (8�3), are denoted as:

      r r r3 3 2 2 1 1
C C C  t t t( ) ( ) ( ), ,     r r r→ ú , úú (8�56)

Using these vectors, calculate the following quantities on the up and down legs
of the light path:
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      r r r12 2
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(8�57)

      r12 = r12   
1 → 2
2 → 3

(8�58)

where the vertical bars indicate the magnitude of the vector. The range rate on
the up and down legs is calculated from:

      
ú úr

r12
12

12= ⋅
r

r12
  
1 → 2
2 → 3

(8�59)

The following quantities are the negative of the contribution to the range rate on
the up and down legs due to the velocity of the transmitter only:
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(8�60)

Note that r12 or r23 in the first term of Eq. (8�55) is calculated from Eqs. (8�57)
and (8�58). The second term of Eq. (8�55) contains the relativistic delay in the
light time due to the Sun S. The third term contains relativistic delays for body B
equal to Mercury, Venus, Earth, the Moon, and the planetary systems Mars
through Pluto. The delay due to each of these ten bodies can be turned on or off
by the user on the GIN file. The following equations can be used to calculate the
three variables in the third term of Eq. (8�55) and, when B = the Sun S, the three
variables in the second term. For each body B (up to eleven bodies, including the
Sun S), the light-time solution interpolates the planetary ephemeris for the
position, velocity, and acceleration vectors of body B relative to the Solar-System
barycenter C at the epochs of participation t3, t2, and t1:

      rB
C t3( ),  rB

C t2( ),  rB
C t1( )     r r r→ ú , úú (8�61)

Calculate the position vector of each participant relative to body B at its epoch of
participation:

      r r r1
B

1
C

B
Ct t t1 1 1( ) = ( ) − ( )   1 → 2, 3 (8�62)
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Using these vectors, calculate the up-leg and down-leg position vector
differences relative to body B from:

      r r r12 2 1
B

2
B

1
B= ( ) − ( )t t

  
1 2
2 3

→
→

(8�63)

Calculate the magnitudes of the three vectors in Eqs. (8�62):

      
r1

B = r1
B t1( )   1 → 2, 3 (8�64)

Calculate the magnitudes of the two vectors in Eqs. (8�63):
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(8�65)

For light passing a celestial body, starting at radius r1, decreasing to a
minimum radius R, and then increasing to radius r2, the relativistic light-time
delay due to the mass of the body (one of the natural logarithm terms of
Eq. 8�55) is given approximately by:
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where µ is the gravitational constant of the body. This equation is quite accurate
when     r r R1 2,    >> . For light traveling from Jupiter, grazing the surface of the
Sun, and arriving at the Earth, r1 = 5 astronomical units (see Section 4, after Eq.
4�12, for the number of kilometers per astronomical unit), r2 = 1 astronomical
unit, and the radius of the Sun R is 696,000 km. For this case, the relativistic light-
time delay due to the mass of the Sun is about 40.6 km/c. For light traveling
from Saturn, grazing the surface of Jupiter, and arriving at the Earth, r1 = r2 =
5 astronomical units and the radius R of Jupiter is 71,500 km. For this case, the
relativistic light-time delay due to the mass of Jupiter is about 56 m/c. For light
traveling from Saturn, grazing the surface of the Earth, and then stopping, r1 =
10 astronomical units and the radius R of the Earth is 6378 km. For this one-way
case, the relativistic light-time delay due to the mass of the Earth is calculated
from Eq. (8�66) with the factor 2r2/R deleted. The result is a delay of 11.6 cm/c.
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In Eq. (8�55), the relativistic light-time delay due to each celestial body of
the Solar System is calculated in the space-time frame of reference of that body.
The error in the calculated delay due to ignoring the Solar-System barycentric
velocity of the gravitating body has an order of magnitude equal to the
calculated delay multiplied by the velocity of the body divided by the speed of
light c. In the examples given above for the relativistic light-time delays due to
the Sun, Jupiter, and the Earth, the errors in the calculated delays due to ignoring
the Solar-System barycentric velocities of these bodies are about 2 mm/c,
3 mm/c, and 0.01 mm/c, respectively.

In Eq. (8�55), the relativistic light-time delay due to the Sun accounts for
the bending of the light path due to the Sun. However, the relativistic light-time
delay due to each other body of the Solar System does not account for the
bending of the light path due to that body. The largest error occurs for Jupiter.
For a light path starting 5 astronomical units from Jupiter, grazing the surface of
Jupiter, and ending 5 astronomical units from Jupiter, the relativistic light-time
delay due to the mass of Jupiter is about 56 m/c. The error in this calculation due
to ignoring the bending of the light path due to the mass of Jupiter is about
1 mm/c.

Consider a light path between the Earth and a distant spacecraft, which
grazes the surfaces of the Sun and Jupiter. The bending of light due to the Sun
changes the closest approach radius R at Jupiter and hence the relativistic light-
time delay due to Jupiter. Similarly, the bending of light due to Jupiter changes
the closest approach radius at the Sun and hence the relativistic light-time delay
due to the Sun. Since neither of these effects are included in the light-time
equation, the sizes of these effects are errors in Eq. (8�55) for the light time.

First, consider that the transmitter is the Earth, and the light path grazes
the surfaces of the Sun and Jupiter on the way to an infinitely distant spacecraft.
For this case, r1 relative to the Sun is  1 astronomical unit, and r2 relative to the
Sun is infinite. The distance D from the straight-line light path to the intersection
of the incoming and outgoing asymptotes at the Sun is given by Eq. (8�43),
where ∆φ is the bending of light due to the Sun, given by Eq. (8�21). For this case,
D = 1270 km, and the outgoing asymptote is parallel to the straight-line light
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path. From Eqs. (8�66) and (8�21), the change in the relativistic light-time delay
due to a change ∆R in the closest approach radius R is given by the bending of
light ∆φ due to the body, calculated from Eq. (8�21), multiplied by ∆R/c. The
error in the relativistic light-time delay due to Jupiter due to calculating R from
the straight-line light path instead of from the curved path is ∆φ for Jupiter
(calculated for R = 71500 km) which is 7.887 x 10−8 radians multiplied by
∆R = 1270 km/c. The resulting error is 10 cm/c.

Next, consider that the transmitter is a distant spacecraft, and the light
path grazes the surfaces of Jupiter and the Sun on the way to the Earth. For this
case, r1 relative to Jupiter is infinite and r2 relative to Jupiter is 6 astronomical
units. The distance D from the straight-line light path to the intersection of the
incoming and outgoing asymptotes at Jupiter is given by Eq. (8�43), where ∆φ is
the bending of light due to Jupiter, given by Eq. (8�21). For this case, D = 71 km,
and the outgoing asymptote at Jupiter intersects the Earth. The change in the
closest approach radius R at the Sun is 71 km/6 = 11.8 km. The error in the
relativistic light-time delay due to the Sun due to calculating R from the straight-
line light path instead of from the curved path is ∆φ for the Sun (calculated for R

= 696000 km), which is 8.486 x 10−6 radians multiplied by ∆R = 11.8 km/c. The
resulting error is 10 cm/c.

8.3.1.2 Local Geocentric Space-Time Frame of Reference

From Sections 4.5.2 to 4.5.4 and Section 4.4.3, the geometry of space-time
near the Earth is described by the one-body point-mass isotropic metric for the
Earth in an inertial coordinate system that is rotating due to geodesic precession
and the Lense-Thirring precession. The rotation rate of the geocentric inertial
coordinate system is about 3 x 10−15 rad/s due to geodesic precession and about
2 x 10−14 rad/s near the Earth due to the Lense-Thirring precession.

The light-time solution in the local geocentric space-time frame of
reference is obtained in a non-inertial frame of reference, which is non-rotating
relative to the Solar-System barycentric space-time frame of reference. When
formulating the equations of motion in the non-inertial geocentric frame of
reference, it must be considered to be rotating with angular velocity − Ω (where
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Ω is the rotation rate of the inertial frame of reference). The down-leg light path
in the local geocentric frame of reference begins with the correct position of the
GPS satellite at the transmission time t2 and ends with the correct position of the
TOPEX satellite or a GPS receiving station on Earth at the reception time t3. In the
non-rotating and non-inertial geocentric frame of reference, the Coriolis and
centrifugal accelerations produce a slight curvature of the light path. However, in
the local geocentric frame of reference, the light-time solution uses a straight-line
light path. Neglect of the curvature of this path produces a negligible error in the
light time.

The one-body point-mass metric for the Earth is given by Eq. (4�60).
Converting from rectangular to spherical coordinates and retaining terms to
order 1/c2 in the components of the metric tensor gives Eq. (8�6), which was
used to derive the one-body light-time equation, given by Eq. (8�54). In the local
geocentric space-time frame of reference, the curvature of the light path due to
the mass of the Earth can be ignored and the down-leg light-time equation is
given by:
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(8�67)

The light-time solution in the local geocentric space-time frame of reference is
currently a down-leg light-time solution only, which is all that is required for
processing GPS/TOPEX data. If an up leg is ever added to the light-time solution
in the geocentric frame of reference, the up-leg light-time equation is obtained
from Eq. (8�67) by replacing 3 with 2 and 2 with 1.

The variables in Eq. (8�67) and in the corresponding up-leg light-time
equation and certain auxiliary quantities can be calculated from Eqs. (8�56) to
Eq. (8�60) and Eq. (8�64). In these equations, the superscripts C and B refer to the
Earth E. A round-trip light-time solution in the local geocentric space-time frame
of reference would produce the vectors given by Eq. (8�56), except that C refers
to the Earth E. These vectors are obtained from Eqs. (8�1) to (8�3) as described in
the penultimate paragraph of Section 8.2. The variables calculated from
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Eqs. (8�57) to (8�60) have a superscript E in the local geocentric frame of
reference.

For a signal transmitted from a GPS satellite to the TOPEX satellite or a
GPS receiving station on Earth, the second term of Eq. (8�67) is less than 2 cm
divided by the speed of light c. Because this term is so small, the gravitational
constant of the Earth used in computing it can be the value in the barycentric
frame obtained from the planetary ephemeris, or the value in the local
geocentric frame of reference calculated from the barycentric value using
Eq. (4�25).

8.3.2 LINEAR DIFFERENTIAL CORRECTOR FOR TRANSMISSION

TIME ON A LEG OF THE LIGHT PATH

In a spacecraft light-time solution, the reception time at a tracking station
on Earth or at an Earth satellite is denoted as t3. The down-leg light-time solution
obtains the transmission time t2 at the spacecraft (free or landed) by an iterative
procedure. Given the converged value of t2, the up-leg light-time solution
obtains the transmission time t1 at a tracking station on Earth or at an Earth
satellite by an iterative procedure.

Let tj and ti denote the reception and transmission times for a leg of the
light path. For the down leg of the light path, j is 3 and i is 2. For the up leg, j is 2
and i is 1. This section develops a linear differential corrector formula for
determining the transmission time ti. For each estimate of the transmission time
ti, the differential corrector produces a linear differential correction ∆ti to ti.

In terms of j and i, the light-time equation (8�55) in the barycentric frame
and the light-time equation (8�67) in the local geocentric frame can be expressed
as:

  
t t

r

c
RLTj i

i j
i j− = + (8�68)
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where   RLTi j  is the relativistic light-time delay on the   i j  leg. In the barycentric

frame, it is the sum of the natural logarithm terms on the right-hand side of

Eq. (8�55). In the local geocentric frame, it is the natural logarithm term on the

right-hand side of Eq. (8�67). In the local geocentric frame,   ri j  is actually     ri j
E . For

a given estimate of the transmission time ti, let the function f be the

corresponding value of the left-hand side of Eq. (8�68) minus the right-hand side

of this equation:

  
f = t j − ti −

ri j

c
− RLTi j (8�69)

Holding   RLTi j  fixed, the partial derivative of f with respect to ti is given by:

      

∂
∂

f
t c r

t
p

ci

i j

i j
i i

i j= − + ⋅ ( ) = − +1
1

1
r

rú
ú

C (8�70)

which was obtained by differentiating Eq. (8�69) and Eqs. (8�56) to (8�58) and
then substituting Eq. (8�60). These last four equations are used to calculate the
variables in Eq. (8�70). In the local geocentric frame, C in these equations and in
Eq. (8�70) refers to the Earth E. The solution of Eq. (8�68) for the transmission
time ti is the value of ti for which the function f is zero. For a given estimate of ti,
and the corresponding values of f and   ∂ f ∂ ti , the differential correction to ti

which drives f to zero linearly is given by:

    
f +

∂ f
∂ ti

∆ti = 0 (8�71)

Solving for ∆ti and substituting Eqs. (8�69) and (8�70) gives the desired equation
for the linear differential correction ∆ti to ti:
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∆t
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i j

i j
=

− − −

−1
ú (8�72)

All of the variables in Eq. (8�72) are available from the light-time solution.

8.3.3 DOWN-LEG PREDICTOR FOR TRANSMISSION TIME t2

The down-leg predictor provides the first estimate of the down-leg light
time. Subtracting it from the known reception time t3 at a tracking station on
Earth or at an Earth satellite gives the first estimate of the transmission time t2 at
the spacecraft (a free spacecraft or a landed spacecraft).

Let ∆t3 equal the reception time t3(ET) in coordinate time ET for the
current light-time solution minus the value from the last light-time solution
computed for the same spacecraft. For deep space tracking, there is only one
spacecraft. However, when processing GPS/TOPEX data, there are multiple GPS
satellites. Note that the receiving station on Earth or receiving Earth satellite does
not have to be the same for the two light-time solutions. Also, let ∆t2 equal the
transmission time t2(ET) in coordinate time ET for the current light-time solution
minus the value from the last light-time solution computed for the same
spacecraft.

If the current and previous light-time solutions for the same transmitting
spacecraft have the same receiver at t3, the relation between ∆t2 and ∆t3 is given
approximately by:

    
∆ ∆t t

r

c2 3
23

1= −






ú

(8�73)

where     
úr23  is the down-leg range rate given by Eq. (8�59). If the current and

previous receivers are different, ∆t2 computed from Eq. (8�73) will be in error by
less than 0.03 seconds. For a typical range rate of 30 km/s, the effect of the     

úr23

term of Eq. (8�73) on ∆t2 is 0.1 s for a data spacing (∆t3) of 1000 s.
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Let     r 20
 and     

úr20
 equal the space-fixed position and velocity vectors of the

spacecraft at the transmission time t2 for the last light-time solution for the same
spacecraft. These vectors are relative to the Solar-System barycenter C when
computing in that frame of reference and are relative to the Earth E in the local
geocentric frame of reference. The predicted position vector of the spacecraft at
the transmission time t2 for the current light-time solution is given
approximately by:

      r r r2 2 2 20 0
= + ú ∆t (8�74)

Let r3 equal the space-fixed position vector of the receiver (tracking station on
Earth or Earth satellite) at the reception time t3 for the current light-time
solution. It is referred to the Solar-System barycenter in that frame and to the
Earth in the local geocentric frame of reference. Then, the predicted down-leg
light time is given by:

      
t3 − t2 =

r 3 − r 2

c
(8�75)

where the bars denote the magnitude of the vector and c is the speed of light.

From Eqs. (8�73) to (8�75) with typical range rates and velocities of
30 km/s, the effect of the     

úr23/c term of Eq. (8�73) on the predicted down-leg
light time is about 10−8 ∆t3. For a very large data spacing ∆t3 of 105 seconds
(1.16 days), which is extremely unlikely, this effect is 0.001 s which is negligible.
Hence, the     

úr23/c term of Eq. (8�73) can be discarded, which gives:

    ∆t2 = ∆t3 (8�76)

From Eqs. (8�74) to (8�76), the predicted down-leg light time can be computed
from:

      
t t

t

c3 2
3 2 2 30 0− =

− −r r rú ∆
(8�77)
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Subtracting the predicted down-leg light time from the reception time t3(ET)
gives the first estimate for the transmission time t2(ET) at the spacecraft in
coordinate time ET.

The error in the predicted light time is less than the magnitude of the first
neglected term in the Taylor series for r2 evaluated somewhere in the interval
∆t2, divided by c:

    
δ t3 − t2( ) <

a ∆t3( )2

2c
(8�78)

where a is the acceleration of the spacecraft. The maximum acceleration in the
Solar System occurs in a region near the Sun. At 3.3 solar radii from the center of
the Sun, the acceleration is 25 m/s2. This acceleration increases to 274 m/s2 at the
surface of the Sun. Except for this region, where it is unlikely that a spacecraft
would survive, the maximum acceleration in the rest of the Solar System is
25 m/s2 which occurs at the surface of Jupiter. With simultaneous tracking data
from several tracking stations, ∆t3 can be positive or negative, and its absolute
value can vary from zero to the doppler count time. I presume that when a =
25 m/s2, the count time and data spacing will not exceed 1000 s. Substituting
these values into Eq. (8�78) gives a down-leg predictor error of 0.042 s.
Furthermore, I presume that far larger count times will be used with much
smaller accelerations, but the product a(∆t3)2 will not exceed 25 x 106 m. This will
allow count times up to 3160 s when a = 2.5 m/s2, 10,000 s when a = 0.25 m/s2,
and 31,600 s when a = 0.025 m/s2. In cruise at one astronomical unit from the
Sun, the spacecraft acceleration due to the Sun is 5.9 x 10−3 m/s2, and count times
as high as 65,000 s can be used. All of these count times are considerably larger
than those currently used, especially the larger count times corresponding to the
smaller accelerations. Thus, since all of the above count times correspond to a
predictor error of 0.042 s, it is safe to say that the predicted down-leg light time
will almost always be accurate to better than 0.1 s. Of course, the predicted
down-leg light time for the first light-time solution after a large gap in the data
may be very inaccurate. The only consequence of this would be a few extra
iterations in the down-leg light-time solution for the transmission time t2.
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Eq. (8�77) for the predicted down-leg light time requires a previous light-
time solution for the same spacecraft. Hence, for the first light-time solution for
each spacecraft, use a predicted down-leg light time of zero. That is, the first
estimate of t2(ET) will be t3(ET). For GPS/TOPEX data, an estimated down-leg
light time of zero is quite accurate since the actual down-leg light time is less than
0.1 s. For a distant spacecraft, the use of an initial light time of zero will simply
result in a few extra iterations for determining t2 for the first light-time solution.

8.3.4 UP-LEG PREDICTOR FOR TRANSMISSION TIME t1

The up-leg light time differs from the down-leg light time because of the
motion of the Earth between the transmission time t1 at the transmitting station
on Earth or at an Earth satellite and the reception time t3 at the receiving station
on Earth or at an Earth satellite and because of the different geocentric positions
of the transmitter and receiver at these two times. The up-leg predictor does not
account for the geocentric motion of the transmitter between t1 and t3 or the
different geocentric positions of separate transmitters and receivers. The
resulting error in the predicted up-leg light time is up to the Earth�s radius
divided by the speed of light or 0.021 seconds. Note that the up-leg and down-
leg light times are both based upon the position of the spacecraft at the reflection
time t2.

Let     úrE  denote the contribution to the down-leg range rate due to the
velocity of the Earth:

      
ú úr

r
tE E

C= ⋅ ( )r
r23

23
3 (8�79)

where the down-leg unit vector is computed from Eqs. (8�56) to (8�58) and the
second vector in (8�79) is the velocity vector of the Earth relative to the Solar-
System barycenter at the reception time t3. Note that in the local geocentric
space-time frame of reference, this velocity vector is relative to the Earth E and

    úrE  is zero.
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Given the converged down-leg light time t3 − t2 in coordinate time ET and

    úrE  calculated from Eq. (8�79), the predicted up-leg light time is calculated from:

    
t t t t

r
c2 1 3 2 1

2
− = −( ) −





úE (8�80)

Subtracting the predicted up-leg light time from t2(ET) obtained from the down-
leg light-time solution gives the first estimate for the transmission time t1(ET) at
the transmitting station on Earth or an Earth satellite.

The up-leg predictor does not account for the acceleration of the Earth
acting from t1 to t3. The resulting error in the predicted up-leg light time can be
calculated from Eq. (8�78) where a refers to the acceleration of the Earth
(6 x 10−6 km/s2) and ∆t3 refers to the round-trip light time. For a spacecraft
range of 50 astronomical units, the round-trip light time is 50,000 s, and the error
in the predicted up-leg light time is up to 0.025 s. Considering the above-
mentioned error of 0.021 s, the total error in the predicted up-leg light time is less
than 0.05 seconds. Note that for a spacecraft range of 50 astronomical units, the

    úrE  term of Eq. (8�80) contributes about 5 s to the predicted up-leg light time.

If an up leg is ever added to the light-time solution in the local geocentric
space-time frame of reference, Eq. (8�80) applies with     úrE  = 0.

8.3.5 MAPPING EQUATIONS

The iterative solution for the transmission time ti for a given leg of the
light path continues until the linear differential correction ∆ti to ti calculated from
Eq. (8�72) is less than the value of the input variable LTCRIT. The nominal value
for LTCRIT is 0.1 s. Then, position and velocity vectors and related quantities
(which are calculated or are interpolated from planetary, small-body, satellite,
and spacecraft ephemerides) are mapped from the estimate ti of the transmission
time to the final value ti + ∆ti. The mapping equations, which are used at t2 and at
t1, are given in Subsection 8.3.5.1. The corresponding analysis, which led to the
nominal value of 0.1 s for LTCRIT, is given in Subsection 8.3.5.2.
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8.3.5.1 Mapping Equations

Space-fixed position and velocity vectors are mapped using quadratic and
linear Taylor series:

      r r r rt t t t t t ti i i i i i i+( ) = ( ) + ( )( ) + ( )( )∆ ∆ ∆ú úú1
2

2 (8�81)

      ú ú úúr r rt t t t ti i i i i+( ) = ( ) + ( )( )∆ ∆ (8�82)

These equations are used to map space-fixed position and velocity vectors
interpolated from the planetary ephemeris and small-body ephemeris at t2 and
t1 (Section 3.1.2.3), a satellite ephemeris at t2 (Section 3.2.2.2), a spacecraft
ephemeris at t2, calculated body-centered space-fixed position and velocity
vectors of a landed spacecraft at t2 and a tracking station on Earth at t1, and the
ephemeris of an Earth satellite at t1.

The 3 x 3 body-fixed to space-fixed transformation matrix TE for the Earth
at t1 and the matrix TB for the body B that a landed spacecraft is resting upon at
t2 are mapped using a quadratic Taylor series:

    T t t T t T t t T t ti i i i i i i+( ) = ( ) + ( )( ) + ( )( )∆ ∆ ∆ú úú1
2

2 (8�83)

True sidereal time θ at t1 is mapped linearly:

    θ θ θt t t t ti i i i i+( ) = ( ) + ( )∆ ∆ú (8�84)

Some mapping is also performed at the reception time t3 at a tracking
station on Earth or at an Earth satellite. In the algorithms for computing
ET − TAI at the reception time t3 at a tracking station on Earth (Section 7.3.1) and
at an Earth satellite (Section 7.3.3), position and velocity vectors are mapped
from a preliminary estimate of t3(ET) to the final value of t3(ET) (which differ by
less than 4 x 10−5 s) using Eqs. (7�9) and (7�10), which are equivalent to Eqs.
(8�81) and (8�82). In the algorithm in Section 7.3.1, the Earth-fixed to space-fixed
transformation matrix TE for the Earth and true sidereal time θ are also mapped
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from the preliminary estimate of t3(ET) to the final value using Eqs. (8�83) and
(8�84).

8.3.5.2 Nominal Value for Variable LTCRIT

The error in the linear differential correction ∆ti calculated from
Eq. (8�72) can be up to:

    

a ∆ti( )2

2c
(8�85)

where a is the acceleration of the transmitter for the leg of the light path (the
spacecraft at t2 for the down leg, or a tracking station on Earth or Earth satellite
at t1 for the up leg). The maximum acceleration is that of a free spacecraft. From
the paragraph containing Eq. (8�78), the highest acceleration that is likely to be
encountered is 25 m/s2. The mapping equations (8�81) to (8�84) use a differential
correction ∆ti up to the value of the variable LTCRIT, whose nominal value is
0.1 s. Hence, from (8�85), differential corrections ∆ti up to 0.1 s will be accurate to
at least 0.4 ns. Time in the ODP is measured in seconds past J2000. Time up to
30 years from J2000 will be represented to 10−8 s on a 17-decimal-digit computer
(the ODP is currently programmed on computers that have a word length
greater than 16 decimal digits but less than 17 decimal digits). Hence, the error in
∆ti up to 0.1 s calculated from Eq. (8�72) is less than the last bit of time measured
in seconds past J2000 on a 17-decimal-digit machine. So, if ∆ti is less than 0.1 s,
ti +∆ti is the final value of ti.

Of the four mapping equations, the accuracy of Eq. (8�81) for mapped
position vectors is the most critical. Computed values of observed quantities are
calculated from accurate and precise values of position vectors of the
participants. High-accuracy velocity vectors are not required. The error in
mapped position vectors calculated from Eq. (8�81) is up to:

    
1
6 J ∆ti( )3 (8�86)
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where J is the magnitude of the jerk vector for participant i. The jerk vector for a
free spacecraft can be much higher than the jerk vector for a tracking station or a
landed spacecraft. The highest value likely to be encountered anywhere in the
Solar System is 5 x 10−4 km/s3. Hence, from (8�86), position vectors mapped
through a time interval ∆ti of up to 0.1 s will have a Taylor series truncation error
of up to 10−4 m. From the preceding paragraph, the time truncation error on a
17-decimal-digit machine is 10−8 s. For a typical velocity of 30 km/s, the
corresponding error in position is 3 x 10−4 m. Hence, mapping quantities through
∆ti up to LTCRIT = 0.1 s is acceptable because the resulting Taylor series
truncation error for position vectors is less than the variation in position vectors
due to the time truncation error.

From Section 8.3.3, the first estimate for t2 will almost always be accurate
to better than 0.1 s. From Section 8.3.4, the first estimate for t1 will always be
accurate to better than 0.05 s. From Section 8.3.5.2, quantities which are
calculated or interpolated at an estimate for ti (where i = 2 or 1) can be mapped
through ∆ti up to LTCRIT = 0.1 s with negligible error. Hence, in almost all
circumstances, quantities need to be calculated or interpolated at only one
estimate for t2 and t1. However, if the user desires to reduce the Taylor series
truncation error in Eq. (8�81) by reducing LTCRIT to a smaller value such as
0.01 s, then quantities would have to be calculated or interpolated at two
estimates for t2 and t1.

It will be seen in Section 13 that computed values of doppler observables
are significantly affected by roundoff errors in time and position. One way to
eliminate these errors would be to recode programs PV and Regres in quadruple
precision (instead of the current double precision). If this is done, the appropriate
value for LTCRIT would be 0.4 x 10−3 s.

8.3.6 ALGORITHM FOR SPACECRAFT LIGHT-TIME SOLUTION

If the transmitter is a tracking station on Earth or an Earth satellite, the
spacecraft light-time solution contains an up leg and a down leg. However, if the
spacecraft is the transmitter, the light-time solution contains a down leg only.
The spacecraft can be a free spacecraft or a landed spacecraft on any body in the
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Solar System. The receiver or transmitter can be a tracking station on Earth or an
Earth satellite. The light-time solution can be obtained in the Solar-System
barycentric space-time frame of reference for a spacecraft anywhere in the Solar
System. If the spacecraft is very near the Earth (such as in a low Earth orbit), the
light-time solution can be obtained in the local geocentric space-time frame of
reference.

It will be seen in Section 10.2.3.1 and Section 13 that in order to obtain the
computed values of spacecraft data types, one, two, or four light-time solutions
are required. The starting point for each spacecraft light-time solution is the
reception time t3(ST) in station atomic time ST at a tracking station on Earth or at
an Earth satellite. For a DSN tracking station on Earth, the reception time t3(ST) is
at the station location. The antenna correction, which is calculated after the light-
time solution from the formulation of Section 10.5, changes the point of
reception from the station location (which is on the primary axis of the antenna)
to the secondary axis of the antenna. This is the tracking point of the antenna, to
which the actual observables are calibrated. For reception at a GPS tracking
station on Earth or at an Earth satellite, the reception time t3(ST) is at the nominal
phase center of the receiving antenna. These phase center locations are calculated
as described in Sections 7.3.1 and 7.3.3. For each data type, Sections 11.2.1 and
10.2.3.3.1 give the equations for transforming the data time tag and the count
time (if any) for the data point to the reception time t3(ST)R at the receiving
electronics for each of its light-time solutions. Subtracting the down-leg delay
(defined in Section 11.2) as described in Section 11.2.2 gives the reception time
t3(ST) at the station location or nominal phase center.

The spacecraft light-time solution is obtained by performing the following
steps:

1. Transform the reception time t3(ST) to t3(TAI) in International
Atomic Time TAI. Sections 2.5.1, 2.5.2, and 2.5.3 describe these time
transformations for a DSN tracking station on Earth, a GPS receiving
station on Earth, and a TOPEX satellite, respectively.
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2. Transform the reception time t3(TAI) to t3(ET) in coordinate time ET.
The algorithm that applies for a tracking station on Earth is given in
Section 7.3.1. The algorithm in Section 7.3.3 applies for reception at
the TOPEX satellite. Steps 1 and 2 produce the reception time t3 in all
of the time scales along the path from t3(ST) to t3(ET) and precision
values of the time differences of adjacent epochs (see Figures 2�1 and
2�2). Step 2 also produces all of the space-fixed position (P), velocity
(V), and acceleration (A) vectors required at t3. The P, V, and A
vectors interpolated from the planetary ephemeris are described in
Section 3.1.2.3.1 in the Solar-System barycentric frame and in Section
3.1.2.3.2 in the local geocentric frame of reference. If the receiver is a
tracking station on Earth, geocentric space-fixed P, V, and A vectors
of the tracking station are calculated from the formulation of Section
5. If the receiver is an Earth satellite, geocentric space-fixed P, V, and
A vectors of the satellite are interpolated from the satellite
ephemeris. All quantities obtained in Step 2 are in the Solar-System
barycentric or local geocentric space-time frame of reference.

3. (Barycentric Frame Only). Add the geocentric space-fixed P, V, and A
vectors of the Earth satellite or the tracking station on Earth to the
Solar-System barycentric P, V, and A vectors of the Earth to give the
Solar-System barycentric P, V, and A vectors of the receiver at the
reception time t3(ET) (see Eq. 8�1).

4. (Barycentric Frame Only). In Eq. (8�55), for each body B and the Sun
S for which we calculate a relativistic light-time delay, calculate the
vector and scalar distance from the body to the receiver (point 3) at
the reception time t3(ET) from Eqs. (8�62) and (8�64) with each
subscript 1 changed to a 3.

5. (Geocentric Frame Only). For use in Eq. (8�67), calculate the
magnitude of the geocentric space-fixed position vector of the
receiver (point 3) at the reception time t3(ET).
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6. For the first light-time solution for each spacecraft, use zero for the
predicted down-leg light time. For all light-time solutions after the
first one for each spacecraft, calculate the predicted down-leg light
time from Eq. (8�77). Note that the vectors in this equation are
geocentric in the local geocentric frame of reference. Subtract the
predicted down-leg light time from the reception time t3(ET) to give
the first estimate of the transmission time t2(ET) at the spacecraft.

7. At the estimate for the transmission time t2(ET), interpolate the
planetary ephemeris and small-body ephemeris for the P, V, and A
vectors specified in Section 3.1.2.3.1 in the Solar-System barycentric
frame of reference and in Section 3.1.2.3.2 in the local geocentric
frame of reference.

8. If the data type is one-way doppler (F1) or a one-way narrowband
(INS) or wideband (IWS) spacecraft interferometry observable and
the spacecraft is within the sphere of influence of one of the outer
planet systems, or if the center of integration for the ephemeris of a
free spacecraft or the body upon which a landed spacecraft is resting
is a satellite or the planet of one of the outer planet systems,
interpolate the satellite ephemeris for this planetary system at the
estimate for the transmission time t2(ET) for the P, V, and A vectors
specified in Section 3.2.2.2.

9. If the spacecraft is free, interpolate the spacecraft ephemeris for the
P, V, and A vectors of the spacecraft relative to its center of
integration at the estimate for the transmission time t2(ET). If the
spacecraft is a GPS satellite, interpolate its geocentric ephemeris
exactly as specified for the TOPEX satellite in Section 7.3.3. The
resulting geocentric position vector of the GPS satellite will be the
position vector of its nominal phase center.

10. If the spacecraft is landed, calculate the space-fixed P, V, and A
vectors of the landed spacecraft relative to the lander body B at the
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estimate for the transmission time t2(ET) from the formulation of
Section 6.

11. (Barycentric Frame Only). Using Eq. (8�2), add the P, V, and A
vectors obtained in Steps 7 to 10 to give the Solar-System barycentric
P, V, and A vectors of the spacecraft at the estimate for the
transmission time t2(ET).

12. (Barycentric Frame Only). In Eq. (8�55), for each body B and the Sun
S for which we calculate a relativistic light-time delay, calculate the
vector and scalar distance from the body to the spacecraft (point 2) at
the transmission time t2(ET) from Eqs. (8�62) and (8�64) with each
subscript 1 changed to a 2.

13. (Geocentric Frame Only). For use in Eq. (8�67), calculate the
magnitide of the geocentric space-fixed position vector of the
transmitter (point 2) at the transmission time t2(ET).

14. Calculate vectors, scalars, and the relativistic light time along the
down leg from the spacecraft to the receiver. Calculate     r r23 23, ú ,      r23

(which is     r23
E  in the local geocentric frame),     ú , úr p23 23 and  from Eqs.

(8�57) to (8�60). In the Solar-System barycentric frame, these
quantities are computed from the Solar-System barycentric vectors
given by (8�56). In the local geocentric frame, these quantities are
computed from the corresponding geocentric vectors (i.e., replace
the superscript C with E in 8�56). In the Solar-System barycentric
frame of reference, for each body B and the Sun S for which a
relativistic light-time delay is computed in Eq. (8�55), calculate     r 23

B

and     r23
B  from Eqs. (8�63) and (8�65). Note that the vectors in

Eq. (8�63) are calculated in Steps 4 and 12. Given all of these
quantities, calculate the down-leg relativistic light-time delay RLT23.
In the Solar-System barycentric frame, it is the sum of the natural
logarithm terms on the right-hand side of Eq. (8�55). In the local
geocentric frame, it is the natural logarithm term on the right-hand
side of Eq. (8�67).
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15. Given t3(ET) from Step 2, the current estimate for the transmission
time t2(ET) at the spacecraft, and the quantities computed on the
down leg of the light path in Step 14, calculate the linear differential
correction ∆t2 to t2(ET) from Eq. (8�72). Add ∆t2 to t2(ET) to give the
next estimate for the transmission time t2(ET) at the spacecraft.

16. If the absolute value of ∆t2 is less than the value of the input variable
LTCRIT, whose nominal value is 0.1 s, proceed to Step 17. Otherwise,
go to Step 7. A second parameter which controls the light-time
solution is the input variable NOLT (number of light times), whose
nominal value is 4. If convergence (i.e., the absolute value of ∆t2 is
less than LTCRIT) is not obtained after NOLT passes through Steps 7
to 15, halt the execution of program Regres.

17. Map everything calculated or interpolated at the last estimate of
t2(ET) in Steps 7 to 10 to the final estimate t2(ET) + ∆t2 using
Eqs. (8�81) to (8�84).

18. Using the mapped quantities from Step 17, repeat Steps 11 to 14.

19. For round-trip light-time solutions, time differences are not
computed at the reflection time t2(ET). However, for one-way
doppler, time differences are computed at the transmission time
t2(ET). These calculations are performed after the light-time solution
using the formulation given in Section 11.4. For GPS/TOPEX
observables, time differences are calculated at the transmission time
t2(ET) at the GPS satellite. Transform the transmission time t2(ET) at
the GPS satellite to the other time scales shown in Fig. 2�2 as
described in Section 2.5.5. The algorithm for computing the time
difference ET � TAI at the GPS satellite is given in Section 7.3.4.

The remainder of this algorithm for the spacecraft light-time solution
applies for the up-leg light-time solution. As currently coded, the up-leg light-
time solution applies only in the Solar-System barycentric space-time frame of
reference. The light-time solution in the local geocentric frame of reference has a
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down leg only. Also, the transmitter at the transmission time t1(ET) must be a
tracking station on Earth. The following algorithm applies for the up-leg light-
time solution in the Solar-System barycentric frame of reference and also in the
local geocentric frame of reference. Also, the transmitter may be an Earth
satellite.

20. Calculate the predicted up-leg light time from Eqs. (8�79) and (8�80).
In Eq. (8�79), the vectors are available from Steps 2 and 14. In the
local geocentric frame of reference, replace     úrE calculated from
Eq. (8�79) with zero. In Eq. (8�80),     t3 − t2( ) is the converged down-
leg light time given by the right-hand side of Eq. (8�55) in the
barycentric frame and Eq. (8�67) in the local geocentric frame. It is
available from Step 14. Subtract the predicted up-leg light time from
the converged estimate of t2(ET) obtained in Step 15 to give the first
estimate of the transmission time t1(ET) at the transmitter (a tracking
station on Earth or an Earth satellite).

21. At the estimate for the transmission time t1(ET), interpolate the
planetary ephemeris for the P, V, and A vectors specified in Section
3.1.2.3.1 in the Solar-System barycentric frame of reference and in
Section 3.1.2.3.2 in the local geocentric frame of reference.

22. If the transmitter is an Earth satellite, interpolate the satellite
ephemeris for the geocentric space-fixed P, V, and A vectors of the
satellite at t1(ET). This may require calculating the offset from the
center of mass of the satellite to the nominal location of its phase
center as described in Section 7.3.3.

23. If the transmitter is a tracking station on Earth, calculate its
geocentric space-fixed P, V, and A vectors at t1(ET) from the
formulation of Section 5.

24. (Barycentric Frame Only). Using Eq. (8�3), add the P, V, and A
vectors obtained in Steps 21 to 23 to give the Solar-System
barycentric P, V, and A vectors of the transmitter (a tracking station
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on Earth or an Earth satellite) at the estimate for the transmission
time t1(ET).

25. (Barycentric Frame Only). In Eq. (8�55), for each body B and the Sun
S for which we calculate a relativistic light-time delay, calculate the
vector and scalar distance from the body to the transmitter (point 1)
at the transmission time t1(ET) from Eqs. (8�62) and (8�64).

26. (Geocentric Frame Only). For use in Eq. (8�67), calculate the
magnitude of the geocentric space-fixed position vector of the
transmitter (point 1) at the transmission time t1(ET).

27. Calculate vectors, scalars, and the relativistic light time along the up
leg from the transmitter to the spacecraft. Calculate     r r12 12, ú ,      r12

(which is     r12
E  in the local geocentric frame),     ú , úr p12 12 and  from

Eqs. (8�57) to (8�60). In the Solar-System barycentric frame, these
quantities are computed from the Solar-System barycentric vectors
given by (8�56). In the local geocentric frame, these quantities are
computed from the corresponding geocentric vectors (i.e., replace
the superscript C with E in 8�56). In the Solar-System barycentric
frame of reference, for each body B and the Sun S for which a
relativistic light-time delay is computed in Eq. (8�55), calculate     r12

B

and     r12
B  from Eqs. (8�63) and (8�65). Note that the vectors in

Eq. (8�63) are calculated in Steps 12 and 25. Given all of these
quantities, calculate the up-leg relativistic light-time delay RLT12. In
the Solar-System barycentric frame, it is the sum of the natural
logarithm terms on the right-hand side of Eq. (8�55). In the local
geocentric frame, it is the natural logarithm term on the right-hand
side of Eq. (8�67).

28. Given t2(ET) from Step 15, the current estimate for the transmission
time t1(ET) at the transmitter (a tracking station on Earth or an Earth
satellite), and the quantities computed on the up leg of the light path
in Step 27, calculate the linear differential correction ∆t1 to t1(ET)
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from Eq. (8�72). Add ∆t1 to t1(ET) to give the next estimate for the
transmission time t1(ET) at the transmitter.

29. If the absolute value of ∆t1 is less than the value of the input variable
LTCRIT, whose nominal value is 0.1 s, proceed to Step 30. Otherwise,
go to Step 21. If convergence (i.e., the absolute value of ∆t1 is less
than LTCRIT) is not obtained after NOLT passes through Steps 21 to
28, halt the execution of program Regres.

30. Map everything calculated or interpolated at the last estimate of
t1(ET) in Steps 21 to 23 to the final estimate t1(ET) + ∆t1 using
Eqs. (8�81) to (8�84).

31. Using the mapped quantities from Step 30, repeat Steps 24 to 27.

32. If the transmitter is a DSN tracking station on Earth, transform the
transmission time t1(ET) to the other time scales shown in Figure 2�1
as described in Section 2.5.4. The algorithm for computing the time
difference ET − TAI at the tracking station on Earth is given in Section
7.3.2. If the transmitter is an Earth satellite, transform t1(ET) to t1(ST)
as described in Section 2.5.5 with t2 replaced with t1 (see Figure 2�2).
The algorithm for computing the time difference ET − TAI at the
Earth satellite is given in Section 7.3.4 (with t2 replaced with t1).

8.4 QUASAR LIGHT-TIME SOLUTION

8.4.1 LIGHT-TIME EQUATION

The spacecraft light-time equation (8�55) in the Solar-System barycentric
space-time frame of reference will be modified to apply for light traveling from a
distant quasar to a tracking station on Earth or an Earth satellite. Applying this
equation to two different receivers (where either receiver can be a tracking
station on Earth or an Earth satellite) and then subtracting analytically gives the
time for the quasar wavefront to travel from receiver 1 at the reception time
t1(ET) in coordinate time ET to receiver 2 at the reception time t2(ET).
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In the following, consider that the index 1 in Eq. (8�55) is replaced by i,
which refers to the quasar, and the index 2 in this equation is replaced by j, which
refers to a tracking station on Earth or an Earth satellite. Let r denote the
enormous distance from the Solar-System barycenter to the quasar. Then, the
distance rij from the quasar at time ti to the tracking station on Earth or Earth
satellite at time tj is given by:

      
ri j = r − r j

C t j( ) ⋅LQ (8�87)

where 
      
r j

C t j( ) is the position vector of tracking station or Earth satellite j at the
reception time tj relative to the Solar-System barycenter C and LQ is the unit
vector from the Solar-System barycenter to the quasar. In Eq. (8�55), consider
the relativistic light-time delay due to a specific body B (or the Sun S) and
consider the triangle which involves the receiving station on Earth or Earth
satellite j , body B, and the distant quasar i. Considering the enormous distance r
to the quasar, the numerator of the argument of the natural logarithm in the
relativistic light-time delay can be approximated by:

    ri
B + r j

B + ri j
B = 2r (8�88)

Considering the above-mentioned subtraction which is to follow, this is an
excellent approximation. In the j−B−i triangle, the B−i and j−i sides can be
considered to be parallel due to the enormous distance r to the quasar. Then, the
denominator of the argument of the natural logarithm in the relativistic light-
time delay can be approximated by:

      
ri

B + r j
B − ri j

B = r j
B + r j

B t j( ) ⋅LQ (8�89)

Substituting Eqs. (8�87) to (8�89) into Eq. (8�55) (with 1 and 2 replaced with i and
j) gives the light time from the quasar (point i at time ti) to a tracking station on
Earth or Earth satellite (point j at time tj):
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Consider that two photons leave the quasar at time ti. One photon arrives
at receiver 1 (a tracking station on Earth or an Earth satellite) at coordinate time
t1(ET); the second photon arrives at receiver 2 (a tracking station on Earth or an
Earth satellite) at coordinate time t2(ET). The travel times t2 − ti and t1 − ti are
given by Eq. (8�90) with j = 2 and 1, respectively. Subtracting t1 − ti from t2 − ti

gives the following expression for the time for the quasar wavefront to travel
from receiver 1 to receiver 2:
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In the first term, the Solar-System barycentric position vectors of the two
receivers are calculated from Eq. (8�3) as described in the last paragraph of
Section 8.2. The position vectors of receiver 1 at the reception time t1 and
receiver 2 at the reception time t2 relative to each body B and the Sun S are
calculated from Eq. (8�62). The magnitudes of these vectors are given by
Eq. (8�64).
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The unit vector to the quasar, with rectangular components referred to
the radio frame (see Section 3.1.1) is given by:

    

LQRF
=















cos cos
cos sin

sin

δ α
δ α

δ
(8�92)

where α and δ are the right ascension and declination of the quasar in the radio
frame, which are obtained from the GIN file. The unit vector to the quasar, with
rectangular components referred to the planetary ephemeris frame, is given by:

      
LQ = Rx Ry Rz( )T

LQ RF
(8�93)

where the frame-tie rotation matrices Rz, Ry, and Rx are given by Eqs. (5�117) to
(5�119).

Given the Solar-System barycentric P, V, and A vectors of receiver 1 at the
reception time t1 and receiver 2 at the reception time t2:

      r1
C t1( ),  r 2

C t2( )     r r r→ ú , úú (8�94)

which are obtained as described after Eq. (8�91), calculate     r r12 12 and ú  from
Eq. (8�57). In Eq. (8�91), we want to denote the first term as     r12 c . Hence, from
Eq. (8�57), r12 is given by:

      r12 = − r12 ⋅LQ (8�95)

and its time derivative is given by:

      ú úr12 12= − ⋅r LQ (8�96)

Also, calculate the auxiliary quantity:

      ú úp t12 2 2= ( ) ⋅r LC
Q (8�97)
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The first term of Eq. (8�91) represents the travel time of the quasar
wavefront from receiver 1 to receiver 2 at speed c when the quasar wavefront is
perpendicular to the unit vector to the quasar. The natural logarithm term due to
body B or the Sun S represents the change in this light time due to the bending of
the quasar wavefront due to body B or the Sun S. The maximum effect occurs
when the quasar wavefront grazes the surface of the body and then intersects
the Earth a large distance past the body. For this geometry, it is easy to show
that a natural logarithm term in Eq. (8�91) is equal to the total bending of light
due to the body calculated from Eq. (8�21) multiplied by the component of the
distance between receivers 1 and 2 which is normal to LQ, divided by c.

The maximum effects of the masses of the Sun, Jupiter, and Saturn on the
travel time of the quasar wavefront between the two receivers, calculated from
Eq. (8�91), are about 108 m/c, 100 cm/c, and 36 cm/c, respectively, where c is the
speed of light. The maximum effect of the mass of the Earth is about 0.6 cm/c. In
the argument of the natural logarithm in the Sun term, the µS terms in the
numerator and denominator represent the effects of the bending of the light
path on the arrival times at receivers 1 and 2. The maximum effect of these
bending terms is about 20 cm/c. These bending terms are ignored for the other
bodies in the Solar System. For Jupiter and Saturn, the resulting errors are a
maximum of about 0.10 cm/c and 0.03 cm/c, respectively. Ignoring the indirect
effect of the solar bending on the Jupiter and Saturn effects produces maximum
errors of 1.8 cm/c and 0.8 cm/c when the raypath grazes the Sun and Jupiter or
Saturn. Similarly, ignoring the indirect effect of the Jupiter and Saturn bending
on the solar effect produces maximum errors of 0.18 cm/c and 0.07 cm/c for the
same geometry.

8.4.2 LINEAR DIFFERENTIAL CORRECTOR FOR RECEPTION TIME AT

RECEIVER 2

In a quasar light-time solution, the reception time of the quasar wavefront
at receiver 1 is denoted as t1. The light-time solution obtains the reception time t2

of the quasar wavefront at receiver 2 by an iterative procedure. This section
develops a linear differential corrector formula for determining the reception
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time t2. For each estimate of the reception time t2, the differential corrector
produces a linear differential correction ∆t2 to t2.

Using Eq. (8�95), the quasar light-time equation (8�91) can be expressed
as:

    
t2 − t1 =

r12

c
+ RLT12 (8�98)

where     RLT12  is the relativistic correction to the light time given by the sum of
term 2 plus term 3 of Eq. (8�91). For a given estimate of the reception time

    t2 = t2 ET( ) at receiver 2, let the function f  be the corresponding value of the left-
hand side of Eq. (8�98) minus the right-hand side of this equation:

    
f = t2 − t1 −

r12

c
− RLT12 (8�99)

Holding     RLT12  fixed, the partial derivative of f with respect to t2 is given by:

      

∂
∂

f
t c

t
2

2 21
1= + ( ) ⋅úr LC

Q (8�100)

Substituting Eq. (8�97) gives:

    

∂
∂

f
t

p
c2

121= +
ú

(8�101)

The solution of Eq. (8�98) for the reception time t2 is the value of t2 for which the
function f is zero. For a given estimate of t2, and the corresponding values of

    f and ∂ f ∂ t2 , the differential correction to t2 which drives f to zero linearly is
given by:

    
f +

∂ f
∂ t2

∆t2 = 0 (8�102)
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Solving for     ∆t2  and substituting Eqs. (8�99) and (8�101) gives the desired
equation for the linear differential correction     ∆t2  to t2:

    

∆t
t t

r
c

RLT

p
c

2

2 1
12

12

121
= −

− − −

+
ú (8�103)

All of the variables in Eq. (8�103) are available from the quasar light-time
solution.

8.4.3 ALGORITHM FOR QUASAR LIGHT-TIME SOLUTION

Given the reception time t1(ST) of the quasar wavefront in station atomic
time ST at receiver 1, the quasar light-time solution gives the reception time
t2(ST) of the quasar wavefront in station time ST at receiver 2. It will be seen in
Section 10.2.3.1 and Section 13 that wideband quasar (IWQ) data points have one
light-time solution and narrowband quasar (INQ) data points have two light-
time solutions. The starting point for each quasar light-time solution is the
reception time t1(ST) at a DSN tracking station on Earth or at an Earth satellite.
For a DSN tracking station on Earth, the reception time t1(ST) is at the station
location. The antenna correction, which is calculated after the light-time solution
from the formulation of Section 10.5, changes the point of reception from the
station location (which is on the primary axis of the antenna) to the secondary
axis of the antenna (the tracking point). For reception at an Earth satellite, the
reception time t1(ST) is at the nominal phase center of the satellite�s receiving
antenna (Section 7.3.3) or at the satellite�s center of mass. For each quasar data
type, Sections 11.2.1 and 10.2.3.3.1 give the equations for transforming the data
time tag and the count time (if any) for the data point to the reception time
t1(ST)R at the receiving electronics for each of its light-time solutions. Subtracting
the down-leg delay at receiver 1 (defined in Section 11.2) as described in Section
11.2.2 gives the reception time t1(ST) at the station location on Earth or at the
nominal phase center or center of mass of the Earth satellite. The quasar light-
time solution can only be performed in the Solar-System barycentric space-time
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frame of reference. Quasar data types cannot be processed in the local geocentric
space-time frame of reference.

The quasar light-time solution is obtained by performing the
following steps:

1. The starting point for the quasar light-time solution is the reception
time t1(ST) at receiver 1. If receiver 1 is a DSN tracking station on
Earth, transform t1(ST) to t1(TAI) in International Atomic Time using
the algorithm given in Section 2.5.1 (with t3 replaced with t1). If
receiver 1 is an Earth satellite, transform t1(ST) to t1(TAI) using the
algorithm given in Section 2.5.3 (with t3 replaced with t1).

2. Transform the reception time t1(TAI) to t1(ET) in coordinate time ET.
The algorithm that applies for a tracking station on Earth is given in
Section 7.3.1. The algorithm in Section 7.3.3 applies for reception at an
Earth satellite. In these algorithms, replace t3 with t1. Steps 1 and 2
produce the reception time t1 in all of the time scales along the path
from t1(ST) to t1(ET) and precision values of the time differences of
adjacent epochs (see Figures 2�1 and 2�2). Step 2 also produces all of
the space-fixed position (P), velocity (V), and acceleration (A) vectors
required at t1. The P, V, and A vectors interpolated from the
planetary ephemeris are described in Section 3.1.2.3.1. If the receiver
is a tracking station on Earth, geocentric space-fixed P, V, and A
vectors of the tracking station are calculated from the formulation of
Section 5. If the receiver is an Earth satellite, geocentric space-fixed P,
V, and A vectors of the satellite are interpolated from the satellite
ephemeris. All quantities obtained in Step 2 are in the Solar-System
barycentric space-time frame of reference.

3. Add the geocentric space-fixed P, V, and A vectors of the Earth
satellite or the tracking station on Earth to the Solar-System
barycentric P, V, and A vectors of the Earth to give the Solar-System
barycentric P, V, and A vectors of receiver 1 at the reception time
t1(ET) (see Eq. 8�3).
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4. In Eq. (8�91), for each body B and the Sun S for which we calculate a
relativistic light-time correction, calculate the vector and scalar
distance from the body to receiver 1 at the reception time t1(ET)
from Eqs. (8�62) and (8�64).

5. Set the first estimate of the reception time t2(ET) of the quasar
wavefront at receiver 2 equal to t1(ET).

6. At the current estimate of the reception time t2(ET) of the quasar
wavefront at receiver 2, interpolate the planetary ephemeris for the
P, V, and A vectors specified in Section 3.1.2.3.1. Note that for the
first estimate of t2(ET), which is equal to t1(ET), these quantities are
available from Step 2.

7. At the current estimate of t2(ET), calculate the geocentric space-fixed
P, V, and A vectors of receiver 2. If receiver 2 is a tracking station on
Earth, use the formulation of Section 5. If receiver 2 is an Earth
satellite, obtain these quantities by interpolating the geocentric
satellite ephemeris for receiver 2.

8. Using Eq. (8�3) (with each 1 replaced by a 2), add the P, V, and A
vectors obtained in Steps 6 and 7 to give the Solar-System
barycentric P, V, and A vectors of receiver 2 at the current estimate
of t2(ET).

9. In Eq. (8�91), for each body B and the Sun S for which we calculate a
relativistic light-time correction, calculate the vector and scalar
distance from the body to receiver 2 at the reception time t2(ET)
from Eqs. (8�62) and (8�64) with each 1 changed to a 2.

10. At the current estimate of t2(ET), calculate     r r12 12 and ú  from
Eq. (8�57),     r r12 12 and ú  from Eqs. (8�95) and (8�96), and     úp12 from
Eq. (8�97). Calculate the unit vector LQ to the quasar from
Eqs. (8�92), (8�93), and (5�117) to (5�119). Calculate the relativistic
light-time correction RLT12, which is the sum of term 2 and term 3 of
Eq. (8�91).
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11. Given t1(ET) from Step 2, the current estimate for the reception time
t2(ET) at receiver 2, and the quantities     r RLT p12 12 12, , ú  and   calculated
in Step 10, calculate the linear differential correction ∆t2 to t2(ET)
from Eq. (8�103). Add ∆t2 to t2(ET) to give the next estimate for the
reception time t2(ET) at receiver 2.

12. If the absolute value of ∆t2 is less than the value of the input variable
LTCRIT, whose nominal value is 0.1 s, proceed to Step 13. Otherwise,
go to Step 6. A second parameter which controls the light-time
solution is the input variable NOLT (number of light times), whose
nominal value is 4. If convergence (i.e., the absolute value of ∆t2 is
less than LTCRIT) is not obtained after NOLT passes through Steps 6
to 11, halt the execution of program Regres.

13. Map everything calculated or interpolated at the last estimate of
t2(ET) in Steps 6 and 7 to the final estimate t2(ET) + ∆t2 using
Eqs. (8�81) to (8�84) with i equal to 2.

14. Using the mapped quantities from Step 13, repeat Steps 8 to 10.

15. If receiver 2 is a DSN tracking station on Earth, transform t2(ET) to
t2(ST) as described in Section 2.5.4, with t1 replaced with t2 (see
Figure 2�1). The algorithm for computing the time difference
ET − TAI at the tracking station on Earth is given in Section 7.3.2
(with t1 replaced with t2). If receiver 2 is an Earth satellite, transform
t2(ET) to t2(ST) as described in Section 2.5.5 (see Figure 2�2). The
algorithm for computing the time difference ET − TAI at the Earth
satellite is given in Section 7.3.4.
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